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ABSTRACT

We investigate the absorption structure of the oxygen in the interstellar

medium by analyzing XMM-Newton observations of the low mass X-ray binary

Sco X-1. We use simple models based on the O 1 atomic cross section from

different sources to fit the data and evaluate the impact of the atomic data in

the interpretation of astrophysical observations. We show that relatively small

differences in the atomic calculations can yield spurious results. We also show

that the most complete and accurate set of atomic cross sections successfully

reproduce the observed data in the 21 - 24.5 Å  wavelength region of the spec-

trum. Our fits indicate that the absorption is mainly due to neutral gas with an

ionization parameter of ξ = 10-4 erg cm s-1 , and an oxygen column density of

NO -_ 8-10x 1017 cm-2 . Our models are able to reproduce both the K edge and

the Ka absorption line from O I, which are the two main features in this region.

We find no conclusive evidence for absorption by other than atomic oxygen.

1. Introduction

X-ray spectroscopy provides a powerful tool for understanding the physical and

chemical properties of the diffuse interstellar medium (ISM). The X-ray band covers the

emission and absorption spectra produced by inner-shell transitions of the most abundant

ions from carbon to iron. The interaction of X-ray photons from bright point sources such

as galactic X-ray binaries with the ISM imprints absorption lines and edges in the spectrum

of the source. The energy position and the shape of these features depend on whether the

absorption is due to free atoms or molecules, and on whether these atoms or molecules are

in the gas or in the solid phase.
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Neutral oxygen is a major constituent of the ISM, which makes it one of the most

important elements in astronomical observations. Precise knowledge of the neutral oxygen

atomic quantities is needed for the correct modeling of the observed spectra. Theoretical

calculations of the photoabsorption cross section of the ground state of O t were carried

out by McLaughlin & Kirby (1998) (hereafter Mcx98), using the R-matrix method, giving

a detailed comparison with the experimental results of Stolte et al. (1997). Although

they claimed overall agreement, there are significant discrepancies in the positions of the

inner-shell excited resonances, and the near threshold resonance profiles. This problem was

overcome with the LS-coupling calculation of Gorczyca & McLaughlin (2000) (hereafter

GMc00), by taking into account core relaxation effects and the smearing of the K-edge due

to Auger damping. A more complete R-matrix calculation was carried out in intermediate

coupling by Garcı́a et al. (2005) (hereafter GAR05), for all the ions in the oxygen isonuclear

sequence. There is very good agreement between of the GAR05 calculations with both the

experimental cross section (Stolte et al. 1997), and the GMc00 results.

Oxygen inner-shell features in the X-ray spectrum of galactic sources have been used to

provide abundance determinations in the ISM as well as estimates of the oxygen ionization

fractions (Schulz et al. 2002; Takei et al. 2002; Juett et al. 2004; Turner et al. 2004; Ueda

et al. 2005; Juett et al. 2006). However, studies in the IR and UV have shown that oxygen

can also be found as solid particles (Draine 2003; Whittet 2003). It has been argued that

oscillatory modulations near the K edge should be detected, known as X-ray absorption

fine structure (XAFS). These are condensed matter modulations of the atomic cross section

due to the presence of solid particles (Lee & Ravel 2005; Lee et al. 2009). Studies of the

soft X-rays from galactic sources have reported possible detections of XAFS signatures

(Paerels et al. 2001; Lee et al. 2001, 2002; de Vries et al. 2003; Ueda et al. 2005; de Vries &

Costantini 2009; Kaastra et al. 2009; Pinto et al. 2010).
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XMM-Newton observations of the X-ray source Scorpius X-1 (Sco X-1), reveal strong

absorption in the wavelength region corresponding to neutral oxygen. Located at - 2.8 kpc

distance (Bradshaw et al. 1999), and with a flux of F - 3.4 x 108 erg cm-2 s-1 (in the

2 - 10 keV energy band), it is the brightest X-ray source in the sky, other than the Sun and

the diffuse X-ray background radiation. Its high X-ray flux provides very good statistics

in relatively short exposure times, giving the opportunity to study signatures of oxygen

absorption in the ISM with great detail. de Vries et al. (2003) analyzed high resolution

X-ray spectra of the reflection grating spectrometer (RGS) of the XMM-Newton satellite for

several galactic sources, including Sco X-1. By comparing low and high extinction sources

they were able to separate the ISM and the instrumental components of the O t K edge.

de Vries & Costantini (2009) searched for XAFS signatures in the spectrum of Sco X-1.

The XAFS signature is derived from the differences between the observed flux and the flux

predicted theoretically. However, the model used by these authors is based on the atomic

oxygen absorption cross section calculated by Mcx98.

In this Letter we show the importance of the accuracy of the atomic data used to

model the details of the oxygen absorption in the ISM. We show that small differences

in the K edge structure derived from different atomic calculations yield spurious results

when applied to astronomical observations. In Section 2 we describe the observational data

used for our study, while the theoretical models are described in Section 3. The results

derived from the fits of the models to the data are presented in Section 4. Finally, the main

conclusions are summarized in Section 5.

2. Observation and Data reduction

For the purpose of this work, we make use of the XMM-Newton spectrum of Sco X-1,

taken on orbit 0592 (Obs ID=0152890101), with the RGS instrument (den Herder et al.
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2001). The general observational strategy is described in detail in de Vries et al. (2003)

and de Vries & Costantini (2009), and will not be described here. Given the high X-ray

flux of Sco X-1, standard spectroscopy mode would lead to very high level of pile-up. This

was avoided by choosing a faster readout mode, which is able to read each one of the nine

RGS CCDs in separate exposures. Because of a failure in the RGS2, we make use of only

the RGS1 data in what follows. During this observation there were 24 separate contiguous

exposures; but only the fifth and the eighteenth contain calibrated and reliable data in

the 21 — 25 Å spectral range. Thus, we only use these exposures through the spectral

analysis. In the notation of the SAS rgsproc task, these two exposures are labeled as S005

and S018. We follow the standard procedure for the reduction and extraction of the RGS

spectrum using SAS version 10, with the latest calibration files (CCFs). We finally present

the spectrum with the default binning of 0.05 Å, making use of the full resolution of the

spectrometer.

3. The Models

3.1. Atomic data

Figure 1 shows the photoabsorption cross section for the ground state of neutral

oxygen in the 22.5-24 Å wavelength region from the calculations by MCK98, GMC00, and

GAR05. All these curves have been convolved with a 182 meV full width at half maximum

Gaussian, in order to match the resolution of the curves presented in GMC00. This spectral

region covers both the K edge near 22.5 Å  and the Ka 1s-2p absorption line near 24.5 Å.

Besides the differences in the position of K a , the GAR05 and GMC00 calculations agree very

well. Nevertheless, there are significant discrepancies with respect to the MCK98 result,

particularly in the shape of the K edge and in the energy separation between the K-edge

and the Ka resonance. Because the K a absorption is a prominent and well resolved feature
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in the spectra, and its energy is experimentally known, it is used as reference in all spectral

fits. Thus, uncertainties in the energy and shape of the cross section used around the

inner-shell edges are reflected in the form of spurious residuals in the fits across the edges.

These differences have been addressed in detail by GMC00 as being due to two

important effects: the relaxation of the orbitals due the vacancy in the K shell (which

affects the atomic structure, and thus the resonances and edge positions), and the decay of

the resonances to an infinite number of channels via spectator Auger decay (which affects

the widths of the resonances). It is evident from the comparison in Figure 1 that the lack

of these two effects underestimates the absorption cross section near the K edge by 20-50%.

3.2. Model A

In order to describe the features observed in the Sco X-1 observation we have made

use of the photoionization code xSTAR. Several calculations were carried out covering a

range of parameters, the most important being the hydrogen column density NH , and the

ionization parameter, defined as ξ = L/nR2 , where L is the luminosity of the source, R its

distance, and n is the density of the gas (Tarter et al. 1969). We have constructed a grid

of xSTAR models covering hydrogen column densities of N H = 1019 - 1022 cm-2 , ionization

parameters of ξ = 10-4 - 10 erg cm-2 s-1 , with the gas density fixed to n = 10 3 cm-3 . The

spectral region of interest is relatively small and includes the wavelength range 21- 24.5 Å,

where only oxygen ions are relevant. Thus, the xSTAR models include hydrogen, helium and

oxygen ions in the ionization balance calculation, assuming an oxygen abundance relative

to hydrogen of AO = 6.8 x 10-4 (Grevesse & Sauval 1998). We will refer to this model as

Model A. The xSTAR models incorporate the GAR05 cross sections for all the charge states

of oxygen.
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3.3. Models B, C and D

A simpler description of the absorption of X-rays by a cold medium is to assume that

all the spectral features are a result of photoabsorption by only O i. Then, the observed

flux can be approximated as

F(E) = Foexp [—NO^UO^(E)]
	

(1)

where FO is a normalization factor, NO^ is the oxygen column density, and UO^(E) is the

photoabsorption cross section for neutral oxygen. This is a convenient way to evaluate the

relevance of the atomic data used to fit the observation. Using this assumption, we have

produced 3 additional models using Equation 1, each one with a different cross section

available from the literature. Model B includes the R-matrix calculations by McLaughlin &

Kirby (1998) (Mcx98), Model C includes the photoionization calculations by Garc ı́a et al.

(2005) (GAR05), and Model D includes the Gorczyca & McLaughlin (2000) cross section

(GMc00). Note that the XsTAR calculation, Model A, and Model C are equivalent in the

sense that they use the same atomic data, although the XsTAR calculation includes the

background due to H and He. These models are summarized in Table 1.

4. Results

We have used the models described in Section 3 to fit the absorption observed in

the X-ray spectrum of Sco X-1. To fit the models to the observation and determine the

corresponding statistics we use the X-ray spectral package XspEc v.12.3.0. All the fits

presented here are carried out in the 21— 24.5 Å spectral region. Figure 2 shows the fit using

Model A. This is our main model, since it results from a self-consistent photoionization

calculation and incorporates the most recent atomic cross section for O i (GAR05). In

the upper panel, the black and gray data points correspond to exposures S005 and S018,



–9–

respectively. The best-fit using the XSTAR photoionization model (Model A), is shown in

solid lines, with red and blue corresponding to the fit applied to each exposure, respectively.

The spectrum shows a very strong atomic K edge which covers the 22.8 - 23.3 Å wavelength

range. The inner-shell Kα absorption resonance at - 23.5 Å is also one of the strongest

features in the spectra. The Kβ resonance absorption is much weaker, but still detectable

at - 22.9 Å. In the lower panel, we show the residuals with respect to the model, in units

of σ. Black and gray points correspond to exposures S005 and S018, respectively. Model A

fits the K edge and the Kα absorption line successfully in the two exposures of Sco X-1.

The statistics for the combined fit (i.e., for the two exposures), shows a reduced chi-squared

of X2 /dof = 2.75620 (where dof is the number of degrees of freedom). The best-fit hydrogen

column density is NH = 1.33 x 1021 7L 0.02 cm-2 , which corresponds to a oxygen column

density of NO = 9.04 x 1017 7L 0.12 cm- 2 .

In order to investigate in more detail the effects of the atomic data into the description

of the observed spectra, we repeated the fit to the same observation using simple models

based on the raw photoabsorption cross section of neutral oxygen (see Equation 1). In

Figure 3 we show the fits to the Sco X-1 spectrum using Models B and C. In the upper

panel of the Figure, the black/gray data points are the observation, while the red/blue

curves are the models corresponding to exposures S005/S018, respectively. The best-fits

using Models B and C are shown with dashed and solid lines, respectively. The middle

panel shows the residuals in units of σ with respect to Model B, and the lower panel shows

residuals with respect to Model C. It is important to notice that if these two models were

equivalent, the dashed and solid lines with the same color should be close to each other.

However, there is a clear discrepancy between the dashed lines (Model B) and the solid lines

(Model C), in the region near the K edge of oxygen (- 22.5 - 23 Å). These differences are

clearly seen in the residuals of the fit for Model B, shown in the middle panel. The residuals

also show that Model B cannot completely fit the intensity of the Kα absorption line at
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— 23.5 Å. This model predicts an oxygen column density of NO = 9.25 x 10 17 ::L 0.07 cm- 2 ,

and the statistics of the fit gives a reduced chi-squared of X 2 /dof = 6.02484, which is much

worse than the previous fit using the full photoionization calculation with XSTAR (Model A).

As expected, the fit using the raw cross section of GAR05 (Model C), is equivalent to the

fit using Model A, giving a reduced chi-squared of X2 /dof = 2.44650. Model C predicts

an oxygen column density of NO = 7.94 x 1017 ::L 0.22 cm-2 , somewhat smaller than for

Models A and B. The difference between Models A and C may be due to the numerical

interpolation used in the storage and retrieval of the cross sections by XSTAR.

Model B, which is based on the MCK98 atomic cross section, is the same model used by

de Vries & Costantini (2009) to fit the oxygen absorption in the spectrum of Sco X-1. These

authors claimed the detection of XAFS signatures in the spectra, based on the relative

changes in the observed flux with respect to the smooth flux predicted by the model, for

energies above the K edge. They also argued that the apparent shift of the observed edge

with respect to the atomic model could be due to the fact that some fraction of the oxygen

in the ISM is bound in solids. Nevertheless, the analysis presented here shows that the large

residuals found while fitting (Model B) are artifacts of the use of the MCK98 cross section.

Finally, in Figure 3 we show a similar comparison, using the GAR05 and the GMC00

cross sections (Models C and D). As before, the upper panel shows the Sco X-1 spectrum

and the best-fit models. The black/gray data points are the observation, while the red/blue

curves are the models corresponding to exposures S005/S018, respectively. The best-fits

using Models C and D are shown with solid and dashed lines, respectively. The middle

and lower panels show the residuals in units of Q for Models D and C. The two models are

equivalent, giving similar fits (X 2 /dof = 2.76445, for Model D). This is consistent with the

agreement between the calculations by GMC00 and GAR05. The oxygen column density

derived from this model (NO = 10.49 x 1017::L 0.06 cm-2 ), is larger than in all the previous
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models, but consistent within the uncertainties of the parameters predicted by Models A-C.

The difference in the predicted O column between Models C and D can be explained by the

differences in the cross sections. In this small spectral region, the O column depends almost

exclusively on the depth of the K-edge. By comparing the values of the cross section shown

in at 22.8 and 23.0 Å (i.e., before and after the K-edge) in Figure 1, one can notice that the

K-edge in the GMc00 curve is weaker than in the GAR05 curve. Therefore, weaker features

require a larger column density to reproduce the data. All the models applied here, and the

parameters derived from the corresponding fits are summarized in Table 1.

In all the fits presented here, we see residuals of around ::L2σ distributed homogeneously

along the entire spectral range considered in our analysis, consistent with the reduced

chi-squared close to 2 obtained in our best fit. This suggest that most of the errors of the

fit are systematic. However, we notice significant residuals at wavelengths shorter than the

Ka line. Coincidentally, by looking the O t experimental cross section (Stolte et al. 1997),

we can see a rather intense and broad feature at 23.35 Å, which is due to the 1s --^ π*

resonance in molecular oxygen. Unfortunately, a gap in the 23.33 — 23.44 Å  wavelength

region of the observation forbids further analysis. Nevertheless, we cannot rule out the

presence of molecules in this observation.

5. Conclusions

In this Letter we have shown the relevance of the atomic data in modeling the X-ray

spectra from cosmic sources. In particular, we have modeled the Sco X-1 spectrum as viewed

by the RGS1 instrument on board of the XMM Newton satellite, covering the 21 — 24.5 Å

wavelength region. The main spectral features in this region are the absorption K edge

and Ka line from neutral oxygen. The absorption occurs when the X-rays interact with

the cold neutral gas of the ISM. We found a good fit using a self-consistent photoionization
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model, which includes the most recent atomic data calculations for the oxygen isonuclear

sequence by GAR05. Our fits indicate that the absorbing gas has an ionization parameter

of ξ = 10-4 erg cm s- 1 and a hydrogen column density of NO -- 8 - 10 x 1017 cm-2

Simple models based on the raw atomic photoabsorption cross section of O i from

three different theoretical calculations were used to evaluate the impact of their accuracy.

We show that models based on the Mck98 atomic cross sections are unable to reproduce

the structure of the K edge in detail, while models based on the GMc00 and GAR05 atomic

data provide a much accurate fit to the main features observed in the spectrum. The fits

using the most up to date models do not show evidence for absorption by anything other

than atomic oxygen.

The analysis presented here indicates that the atomic data uncertainties in combination

with the limited resolution of the grating spectra makes detection of molecular or solid

material challenging. Although oxygen is expected to be found in molecular form or locked

into solids in the ISM, the use of accurate atomic calculations to correctly account for

atomic oxygen is crucial when searching for XAFS or similar features in the X-ray spectra

of astronomical sources.

We thank T. Gorczyca for providing the Mck98 and GMc00 calculations. This work

was supported by a grant from the NASA astrophysics theory program 05-ATP05-18. This

research has made use of NASA’s Astrophysics Data System.
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Fig. 1.— Comparison of the theoretical photoabsorption cross sections for neutral oxygen in

the 22.5-24 Å wavelength region from McLaughlin & Kirby (1998) (blue curve), Gorczyca &

McLaughlin (2000) (red curve), and Garcı́a et al. (2005) (black curve). This spectral region

covers both the absorption K-edge and the K a absorption line (1s-2p) from O t. All the

curves have been convoluted with a 182 meV FWHM Gaussian.
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Fig. 2.— Sco X-1 spectrum as viewed by RGS1 in XMM Newton, covering the 21 — 24.5 Å

wavelength region. In the upper panel, the black and gray data points correspond to expo-

sures S005 and S018, respectively, while the best-fit using the XSTAR photoionization model

(Model A), is shown in red and blue applied to each exposure, respectively. The lower panel

shows the residuals in units of σ in the same range with respect to the model. Black and

gray points correspond to exposures S005 and S018, respectively.
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Fig. 3.— Comparison of the spectral fitting using two different models. Upper panel: Sco

X-1 spectrum as viewed by RGS1 in XMM Newton, covering the 21 — 24.5 Å wavelength

region. The black/gray data points are the data while the red/blue curves are the models

corresponding to exposures S005/S018, respectively. The best-fits using Models B and C are

shown with dashed and solid lines, respectively. Middle panel: residuals in units of σ with

respect to Model B. Lower panel: residuals in units of σ with respect to Model C.
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Fig. 4.— Comparison of the spectral fitting using two different models. Upper panel: Sco

X-1 spectrum as viewed by RGS1 in XMM Newton, covering the 21 — 24.5 Å wavelength

region. The black/gray data points are the data while the red/blue curves are the models

corresponding to exposures S005/S018, respectively. The best-fits using Models C and D are

shown with solid and dashed lines, respectively. Middle panel: residuals in units of σ with

respect to Model D. Lower panel: residuals in units of σ with respect to Model C.
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Table 1. List of Models

Model Description Atomic Data NO x2 /dof Notes

(1017 cm-2 )

A Full xsTAR model AkA01a +GAR05b 9.04 f 0.12 2.75620 No significant residuals

B Atomic Cross Sectione Mck98° 9.25 f 0.07 6.02484 Large residuals near K edge

C Atomic Cross Sectione GAR05b 7.94 f 0.22 2.44650 No significant residuals

D Atomic Cross Sectione GMc00d 10.49 f 0.06 2.76445 No significant residuals

aBautista & Kallman (2001)

b Garcı́a et al. (2005)

°McLaughlin & Kirby (1998)

dGorczyca & McLaughlin (2000)

eSee Equation (1)


